AUTOMATIC CLUSTERING AND OPTIMIZED FUZZY LOGICAL RELATIONSHIPS FOR MINIMUM LIVING NEEDS FORECASTING

Yusuf Priyo Anggodo¹, Wayan Firdaus Mahmudy²
Faculty of Computer Science, Universitas Brawijaya, Indonesia
Email: ¹anggodoyusuf1950@gmail.com, ²wayanfm@ub.ac.id

ABSTRACT
Forecasting of minimum living needs is useful for companies in financial planning next year. In this study, the forecasting is done using automatic clustering and optimized fuzzy logical relationships. Automatic clustering is used to form a sub-interval time series data. Particle swarm optimization is used to set and optimize interval values in fuzzy logical relationships. The data used as many as 11 years of historical data from 2005-2015. The optimal value of the test results obtained by the $p = 4$, the number of iterations $= 100$, the number of particles $= 45$, a combination of V_{min} and $V_{max} = [-0.6, 0.6]$, as well as combinations W_{max} and $W_{min} = [0, 4, 0, 8]$. These parameters values produce good forecasting results.

Keywords: minimum living needs, automatic clustering, particle swarm optimization, fuzzy logical relationships

1. INTRODUCTION
Minimum living needs is set in the regulation of the Minister of Manpower and Transmigration, namely "the need for decent living hereinafter abbreviated KHL is a standard requirement for a single worker or workers can live well physically to the needs of one (1) month". In addition to the articles 6 to 8 also stipulates that the KHM is used as a parameter for determining the minimum wage provinces and cities. From the information on the results of forecasting minimum necessities of life can be used as the design of the company's financial future.

Forecasting is usually done a lot of people to know the events that will occur in the future by looking at the events that have occurred previously (Chen et al, 2016). Such as forecasting temperature, precipitation, stock items, earthquakes, etc. Forecasting traditionally do not pay attention to the previous data and more qualitative not quantitative. On the problem of forecasting minimum life needs no studies when forecasting the minimum living needs will be beneficial for the company.

There are several methods of forecasting that uses quantitative approach, one of them is fuzzy logic (Fatyanosa & Mahmudy, 2016; Wahyuni, Mahmudy & Iriany, 2016). In addition there are other fuzzy model, the model of fuzzy time series Chen et al's more simple also be applied to predict the number of applicants at the University of Alabama (Chen and Tunawijaya, 2010). Forecasting methods developed by Chen et al's or so-called fuzzy logical relationship can produce good forecasting for time series data (Chen and Chen, 2011; Chen and Chen, 2015; Qiu et al, 2015; Cheng et al, 2015). Fuzzy logical relationship get an error lower than in previous studies. From the existing research can be concluded that the fuzzy logical relationship can solve the problems of forecasting.

Use of the method of automatic clustering effectively within the classification of previous data so that it can form a cluster with both (Chen and Tunawijaya, 2011; He and Tan, 2012; Saha and Bandyopadhyay, 2013; Hung and Kang, 2014; Askari et al, 2015; Wang and Liu, 2015; Garcia and Flores, 2016). Deemed the use of automatic clustering greatly assist in forecasting to obtain the error value is lower. To improve forecasting results better optimization of the value interval on fuzzy logical relationships can be performed using particle swarm optimization giving an error that the lower (Chen and Kao, 2013; Cheng et al, 2016).

This study is the extension of previous study (Anggodo & Mahmudy, 2016) by adding a mechanism to set and optimize interval values in fuzzy logical relationships. The focus on
this study, the first to examine on the basis of fuzzy time series. The second classification data history minimum living needs using automatic clustering. Third optimization using particle swarm optimization interval. Fourth forecasting the minimum living needs using fuzzy logical relationships. Fifth calculate the error value using the Root Mean Square Error (RMSE) forecasting results with actual data.

2. FUZZY TIME SERIES

Fuzzy time series is a representation of a fuzzy set. Fuzzy set is built based on the time series data of the KHM. A fuzzy set of data generated from the present into the current state and future year data into the next state. Fuzzy set which has been set used for forecasting the coming year.

2.1. Forecast Using Fuzzy Logical Relationships

In this section we will clarify the steps of forecasting methods fuzzy logical relationships by using automatic classification clustering, (Cheng et al, 2016) as follows:

Step 1: classifying the data using automatic clustering algorithm and optimize the value of the interval using the PSO.

Step 2: Assume there are n intervals, u1, u2, u3, ..., un. Then the form of fuzzy sets Ai, where 1 ≤ i ≤ n, so that will be formed:

\[A_1 = 1/u_1 + 0.5/u_2 + 0/u_3 + ... + 0/u_{n-1} + 0/u_n \]
\[A_2 = 0.5/u_1 + 1/u_2 + 0.5/u_3 + ... + 0/u_{n-1} + 0/u_n \]
\[A_3 = 0/u_1 + 0.5/u_2 + 1/u_3 + 0.5/u_4 + ... + 0/u_{n-1} + 0/u_n \]
...
\[A_n = 0/u_1 + 0/u_2 + 0/u_3 + ... + 0.5/u_{n-1} + 1/u_n \]

Step 3: fuzzification every datum of historical data into fuzzy sets. If the datum is ui, where 1 ≤ i ≤ n. So do fuzzification as Ai.

Step 4: building a relationship based on the fuzzy logical fuzzification step 3. If the fuzzification year t and t + 1 is Aj and Ak. So fuzzy logical relationship that is built is Aj → Ak, where Aj called the current state and the next state at the Ak as fuzzy logical relationship. From fuzzy logical relationship be grouped together, in which the same current state included in one group.

Step 5: forecasting using the following principles:

Principle 1: if fuzzification year t is Aj and there is a logical relationship in fuzzy fuzzy logical relationship group, with conditions:

\[Aj \rightarrow Ak \]

Thus, in forecasting the year t + 1 is mk, where mk is the midpoint of the interval uk and the maximum value of membership of fuzzy sets Ak Uk interval.

Principle 2: If fuzzification year t is Aj and no fuzzy logical relationship in fuzzy logical relationship group, with conditions:

\[Aj \rightarrow Ak^{-1} (x1), Ak^{-2} (x2), ... Ak^{-p} (xp) \]

So as to make forecasting year t + 1 using equation 1:

\[
\frac{x_1 \times mk_1 + x_2 \times mk_2 + ... + x_p \times mk_p}{x_1 + x_2 + ... + x_p}.
\]

(1)

Principle 3: if fuzzification year t is Aj and there is a logical relationship in fuzzy fuzzy logical relationships group, with conditions:

\[Aj \rightarrow \# \]

Where the value # is blank. Thus forecasting the year t + 1 is mj, where mj is the midpoint of the interval ui and a maximum value of membership of fuzzy sets Aj Uj interval.

2.2. Classification Of Data Using Automatic Clustering

Automatic clustering algorithm is used to classify numerical data based on the interval (Wand and Liu, 2015). Interval is the distance, so that the numerical data classified by the shortest distance. The smaller the distance between the two elements of the numerical data, the higher the similarity (Qiu et al, 2015). In Figure 1 is shown the stages of automatic clustering.
Here are the steps automatic clustering algorithm (Wang and Liu, 2015; Chen and Tunawijaya, 2015):

Step 1: The first sort ascending numerical data, assuming no similar data.

\[d_1, d_2, d_3, \ldots, d_i, \ldots, d_n. \]

Then calculate \(\text{avarage_diff} \) using equation 2:

\[
\text{avarage_diff} = \frac{\sum_{i=1}^{n-1}(d_{i+1} - d_i)}{n-1},
\]

(2)

\(\text{avarage_diff} \) which is the average of the data numberik and \(d_1, d_i, \ldots, d_n \) is the numerical data that has been sorted.

Step 2: Take the first numerical data (ie the smallest datum) to be placed to the current cluster or need to create a new cluster based on the following principles:

Principle 1: assume the current cluster is the first cluster and there is only one datum that \(d_1 \) and \(d_2 \) is considered that datum adjacent to \(d_1 \), shown as follows:

\[\{d_1\}, d_2, d_3, \ldots, d_i, \ldots, d_n. \]

If \(\text{avarage_diff} \leq d_2-d_1 \), then input into the current cluster consisting \(d_1 \), if it does not create a new cluster consisting \(d_2 \).

Principle 2: assume that the current cluster is not the first cluster and \(d_i \) is the datum only in the current cluster. Assume \(d_k \) is adjacent to the datum datum datum \(d_i \) and is the largest in the antecedent of a cluster, shown as follows:

\[\{d_1\}, \ldots, \{\ldots\}, \{d_j\}, d_k, \ldots, d_n. \]

If the \(d_k-d_j \leq \text{avarage_diff} \) and \(d_k-d_j \geq d_j-d_i \), then input to a cluster owned \(d_k \) \(d_j \), if it does not create a new cluster consisting \(d_k \).

Principle 3: assume that the current cluster is not the first cluster and assume that in a datum the current cluster. Assume that datum adadalah \(d_j \) nearest to.

\[\{d_1\}, \ldots, \{\ldots\}, \{\ldots, d_i, d_j, \ldots, d_n. \]

If \(d_j-d_i \leq \text{avarage_diff} \) and \(d_j-d_i \leq \text{cluster_diff} \), then \(d_j \) input into clusters consisting \(d_i \). If it does not create a new cluster for \(d_j \). \(\text{Cluster_diff} \) calculation shown in equation 3.

\[
\text{cluster_diff} = \frac{\sum_{i=1}^{n-1}(c_{i+1} - c_i)}{n-1},
\]

(3)

\(\text{cluster_diff} \) which is the average of the current cluster and \(c_1, c_2, \ldots, c_n \) is the data in the current cluster.

Step 3: based on the clarification step 2, according to the contents automatic clustering following principles:

Principle 1: if the cluster there are more than two datum, then maintain the smallest and largest datum and datum remove the others.

Principle 2: If the cluster there are two datum, then maintain it all.

Principle 3: If the cluster has only one datum \(d_q \) then add the datum to the value \(d_q - \text{avarage_diff} \) and \(d_q + \text{avarage_diff} \) into clusters. But also must adjust to the following situations:

Situation 1: if the first cluster, then remove \(d_q - \text{avarage_diff} \) and maintain \(d_q \).

Situation 2: if the cluster Last post, then remove \(\text{avarage_diff} + d_q \) and maintain \(d_q \).

Situation 3: if \(d_q - \text{avarage_diff} \) smaller than the smallest value in the antecedent cluster datum, then the third principle does not apply.

Step 4: assume the results of step 3 as follows:

\[\{d_1, d_i\}, \{d_i, d_1\}, \{d_1, d_2\}, \ldots, \{d_i, \ldots, d_1\}, \{d_2, \ldots, d_1\}. \]

Changing the cluster results into an adjacent cluster sub-step through the following:

4.1 The first cluster fox \(\{d_1, d_2\} \) to the interval \([d_1, d_2] \).

4.2 if the current interval \([d_n, d_2] \) and the current cluster \(\{d_n, d_1\} \), then:

(1) if the \(d_n \geq d_k \), then the shape of an interval \([d_n, d_2] \). interval \([d_n, d_1] \) is now the current interval and the next cluster \(\{d_1, d_n\} \) be the current cluster.

(2) if \(d_n < d_k \), then change the current cluster \(\{d_k, d_n\} \) to the interval \([d_n, d_1] \) and create a new interval \([d_n, d_1] \) on the interval \([d_n, d_2] \) and \([d_n, d_1] \). Now \([d_n, d_1] \)
becomes current and next interval cluster \(\{d_m, d_n\} \) be the current cluster. If now the current interval \([d, d_n]\) and the current cluster is \(\{d_i\} \), then change the current interval \([d, d_n]\) be \([d, d_k]\). Now \([d, d_k]\) is the current interval and next interval becomes current interval.

4.3 repeat sub-steps 4.1 and 4.2 until all cluster into intervals.

Step 5: results of step 4 for the interval into sub-intervals \(p \), where \(p \geq 1 \).

2.3. Interval Optimization Using PSO

The concept of PSO algorithm is quite simple and effective in for finding solutions of complex problems (Novitasari, Cholissodin & Mahmudy, 2016; Mahmudy 2014). PSO algorithm model the best solution search by activities of particles moving in the search space, the position of the particle is a representation of the solution represented by the cost. Cost value obtained from the calculation error forecasting results using the RMSE (Cheng et al, 2016). PSO main concept is every particle has a speed which is calculated based pbest and gbest and coefficient values was raised at random. Each to shift the position of each particle must update the value of pbest, gbest, as well as the speed of each particle.

The process of the PSO algorithm in the optimization objective function in accordance with the problems. The first initializes particles presenting the solution of problems. Both do the calculation of the value of cost for each particle. The third did the best position value updates of each particle or particles or pbest and overall gbest. Fourth calculate the speed of each particle, the particle velocity will determine the direction of movement of the particle's position. The fifth did displacement particle positions and do repair to sort in ascending value of the particle, the first iteration randomly generated for the next iteration obtained by equation 4.

\[v_i^{t+1} = w.v_i + c_1.r_1(p_{i}^{t} - x_i^t) + c_2.r_2(g_{i}^{t} - x_i^t), \]

(4)

which \(v_i \) shows the particle velocity \(i \), \(t \) is the iteration time, \(w \) is the weight of inertia, \(c_i \) is the coefficient of particles (cognitive = 1, social = 2), \(r_i \) is a random value in the interval [0,1], \(x_i \) the value of the position of the particle \(i \), \(g_{i}^{t} \) value the best solution on the particle \(i \) and iteration \(t \), and the best overall solution value gbt particle at iteration \(t \). Once the updated value of the speed, the next step is to change the position of each particle using the equation 5.

\[x_i^{t+1} = x_i^t + v_i^{t+1}, \]

(5)

Each iteration changes inertia weight value shown in equation 6.

\[w = w_{min} + (w_{max} - w_{min}) \left(\frac{t_{max} - t}{t_{max}} \right), \]

(6)

\(t_{max} \) is the maximum iteration value has diunsiasiasi beginning before PSO do, \(t \) is an ongoing iteration. \(w_{max} \) and \(w_{min} \) a minimum and maximum weight diunsiasiasi previously. Updates the value of \(w \) in equation 6 usually called time varying Inertia Weight (TVIW).

In the PSO algorithm implementation is sometimes found fast moving particles, the particles have a tendency to come out as a result of the search space limit. Hence, to control the exploitation of the particles need to be limits on the minimum and maximum speed or so-called velocity clamping (Marini and Walczak, 2015). The calculation of the speed limit is shown in equation 7.

\[v_{max} = k \frac{(x_{max} - x_{min})}{2}, \]

(7)

Where \(v_{max} \) shows the value of the maximum speed, \(k \) generated at random intervals (0, 1), whereas \(x_{max} \) and \(x_{min} \) respectively the smallest and largest value of minimum living needs. Limitation of speed or threshold that is used as follows:

if \(v_{i}^{t+1} > v_{max} \) then \(v_{i}^{t+1} = v_{max} \)

if \(v_{i}^{t+1} < v_{min} \) then \(v_{i}^{t+1} = -v_{max} \)

3. EXPERIMENTAL RESULT

Tests were conducted to evaluate the value of a parameter in the automatic clustering and particle swarm optimization solve the problems of forecasting the minimum
living needs. For testing the PSO performed 10 times. Use of this because stochastic PSO algorithm, the best result of the average value.

3.1. Testing The Value of P
The first will be tested on automatic clustering p values shown in Figure 2.

![Figure 2. Testing the value of p](image)

Figure 2 shows the value of $p = 4$ RMSE worth 23404.944 and when the value of $p = 5$ RMSE values increase. Based on this it does not conduct further testing of the p value for a value of more than 5.

3.2. Testing of Iterations
Testing iteration aims to see the value of the best iterations on this issue. These initial conditions include a parameter $p = 4$, the number of particles $= 5$, $W_{max} = 0.9$, $W_{min} = 0.1$, $c_1 = 1$, $c_2 = 1$. Figure 3 shows the results of testing the number of iterations.

![Figure 3. Testing the number of iterations](image)

Figure 3 shows the number of iterations of 100 had a value of cost (RMSE) from the bottom at 22065.574096827. Can be seen in the increasing number of iterations does not mean the lower the cost is because the PSO algorithm is an algorithm stotastic or random nature.

3.3. Testing the Number of Particle
Testing the number of particles aimed to look at the value of the number of particles the best on this issue. These initial conditions include a parameter $p = 4$, the number of iterations $= 100$, $W_{max} = 0.9$, $W_{min} = 0.1$, $c_1 = 1$, $c_2 = 1$. Figure 4 shows the results of testing the number of particles.

![Figure 4. Testing the number of particles](image)

Figure 4 shows the number of particles 45 provides a value that is equal to the lowest cost 22036.208233097. On the number of particles after 45 value higher cost, so that on this issue the best particle number is 45.

3.4. Testing Percentage of Speed
Testing the percentage of speed or V_{min} and V_{max} aims to know the value of a percentage of the dynamic range of the velocity of particles in PSO resulting combination with interval fuzzy logical relationships are optimal. These initial conditions include a parameter $p = 4$, the number of iterations $= 100$, the number of particles $= 45$, $W_{max} = 0.9$, $W_{min} = 0.1$, $c_1 = 1$, $c_2 = 1$. Figure 5 shows the percentage of the speed test results.
3.5. Testing Value of W_{min} and W_{max}

Testing the value of W_{min} and W_{max} to get the best combination. These initial conditions include a parameter $p = 4$, the number of iterations $= 100$, the number of particles $= 45$, $V_{\text{min}} = -0.6$, $V_{\text{max}} = 0.6$, $c_1 = 1$, $c_2 = 1$. Figure 6 shows the results of testing the value W_{min} and W_{max}.

3.6. Testing using the Best Parameter

This section will compare the results of forecasting the results of forecasting using automatic clustering, fuzzy logical relationships (ACFLR) with $p = 4$ while the forecasting results using automatic clustering, particle swarm optimization, and fuzzy logical relationships with the parameter value $p = 4$, the number of iterations $= 100$, the number of particles $= 45$, the percentage of $V_{\text{max}} = 0.6$, the percentage of $V_{\text{min}} = -0.6$, $W_{\text{min}} = 0.4$, $W_{\text{max}} = 0.8$, $c_1 = 1$ and $c_2 = 1$ shown in Figure 7.

4. CONCLUSION

Fuzzy logical Relationships Particle swarm optimization is very helpful to optimize the value of the interval on fuzzy logical relationships that get results RMSE values were lower. Automatic clustering in classifying time series data to establish the interval. The best parameter values so as to produce the optimal value, among others, $p = 4$, the number of iterations $= 100$, the number of particles $= 45$, the percentage of speed $= [-0.6, 0.6]$, the value W_{min} and $W_{\text{max}} = [0.4, 0.8]$.

Further research can be applied this method for forecasting other data are more numerous and optimizing the parameters of fuzzy logical relationships resulting in smaller RMSE values.

5. REFERENCES

