THE EFFECT OF FECL3 AND LENGTH OF INCUBATION ON THE DEGRADATION OF LIGNOCELLULOSE FROM SENGON AND PINE WOODS USING SERPULA LACRYMANS

Irnia Nurika, Nur Hidayat, Nur Lailatul Rahma, Sakunda Anggarini

Abstract


ABSTRACT

The aim of this research is to determine the effect of FeCl3 affected to lignocelullosic degradation of Sengon and Pine wood residue by Serpula lacrymans during incubation. which was showed by the changing value of Total Soluble Phenols (TSP), Total Reducing Sugar (TRS), weight loss and pH extract. The experimental design used is a Factorial Block Randomized Design with three factors: the type of wood (K) (Sengon and Pinewoods), the concentration of FeCl3 (M) selected are 10, 30 and 50 µM and length of incubation (T): 0, 7, 14, 21, 28 and 35 days. The results revealed that the addition of FeCl3 on both types of woods during incubation did not give a significant impact on the value of TSP, TRS, weight loss and pH. The best treatment in TSP production is Sengon wood was incubated for 28 days (0.064 mg/g). While the greatest amount of total reducing sugars is Pinewood, incubated for 28 days in the amount of 36.58 mg/g. The best in percentage of weight loss is Pinewood, incubated for 28 days contains 33,98% with pH extract 4.14

Keywords: biodegradation, lignocelullose, total soluble phenols, total reducing sugar.

Full Text:

PDF

References


Arantes, V., J. Jellison, and B. Goodell. 2012. Peculiarities of Brown-rot Fungi and Biochemical Fenton Reaction with Regard to Their Potential as a Model for Bioprocessing Biomass. Appl. Microbiol. Biotechnol. 94: 323-338.

Agustini, L dan Efiyanti, L. 2015. Pengaruh Perlakuan Delignifikasi terhadap Hidrolisis Selulosa dan Produksi Etanol dari Limbah Berlignoselulosa. Jurnal Penelitian Hasil Hutan 33: 69-80.

Curling, S., Clausen, C., Winandy, J. 2001. The Effect of Hemicellulose Degradation on the Mechanical Properties of Wood During Brown-rot Decay. International Research Group on Wood Protection 01-20219. Stockholm.

Eastwood, D.C., Floudas, D., Binder, M., Majcherczyk, A., Schneider, P., Aerts, A., Asiegbu, F.O., Baker, S.E., Barry, K., Bendiksby, M., Blumentritt, M., Coutinho, P.M. 2011. The Plant Cell Wall- Decomposing Machinery Underlies the Functional Diversity of Forest Fungi. Science 333: 762-765.

Fortin, Y and Poliquin, J. 1976. Natural Durability and Preservation of One Hundred Tropical African Woods. International Development Research Centre.

Gamauf, C., Metz, B., and Seiboth, B. 2007. Degradation of Plant Cell Wall Polymers by Fungi. Mycota: 325-340.

Green, F., Larsen, M. J., Winandy, J. E. and Highley, T. L. 1991. Role of Oxalic Acid in Incipient Brown Rot Decay. Mat. Und. Organismen. 26: 191-213.

Hibbet, D.S and M.J. Donoghue. 2001. Analysis of Character Correlation among Wood Decay Mechanism, Mating Systems, and Substrate Ranges in Homobasidiomycetes. Syst. Biol. 50: 215-242.

Highley, T. L and Green, F. 1997.Mechanism of Brown-Rot Decay : Paradigm or Paradox. Int. Biodeter. Biodegr. 39: 113-124.

Howard, R.L., Abotsi, E.L. Rensburg, J and Howard, S. 2003. Lignocellulose Biotechnology: Issues of Bioconversion and Enzyme Production. Afr. J. Biotech. 2: 602-619.

Howell, C., Hastrup, A. C. S., Goodell, B, and Jellison, J. 2009. Temporal Change in Wood Crystalline CelulloseDuring Degradation by Brown-rot Fungi. Int. Biodeter. Biodegr. 63: 414-419.

Irbe, I., Andersome, I., Andersons, B., Noldt, G., Dizhbite, T., Kurnosova, N., Noupponen, M and Stewart, D. 2011. Characteristisation of the Initial Degradation Stage of Scot Pine Sapwood After Attack by Brown-rot Fungus Caniophora puteana. Biodegradation 22: 719-728.

Jellison, J., Chandhoke, V., Goodell, B., and Fekete, F. A. 1997. The Isolation and Immunolocalization in Iron-binding Compound. Appl. Microbiol. Biotechnol. 35: 805-809.

Kamm, B and Kamm, M. 2004. Principles of Biorefineries. App. Microbio. Biotechnol. 64: 137-145.

Liu, L., Sun, J.S., Li, M., Wang, S.H., Pei, H.S., Zhang, J.S., 2009. Enhanced Enzymatic Hydrolysis and Structural Features of Corn Stover by FeCl3 Pretreatment. Biores.Technol. 100: 5853–5858.

Miller, G. L. 1959. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugars. Anal. Chem. 31:426-428.

Nurika, I. 2013. Mechanism of Lignocellulosic Conversion by The Brown-rot Fungus Serpula lacrymans. Thesis. University of Warwick, Conventry.

Okano, K., Kitagaw, M., Sasaki, Y., and Watanabe, T. 2005. Conversion of Japanese Red Cedar (Cryptomeria japonica) Into A Feed for Ruminants by White-Rot Basidiomycetes. Animal Feed Sci. Technol 120: 235–243.

Pitt, J and Hocking, D. A. 2009. Fungi and Food Spoilage. Springer Dordercht Heidelberg. London.

Ritschkoff, A.C. 1996. Decay Mechanism of Brown-rot Fungi. VTT Publication 268. Espoo, Findland.

Schilling, J.S., Ai, J., Blanchette, R.A., Duncan, S.M., Filley, T.R and Tschimer, U.W. 2012. Lignocellulose Modification by Brown-rot Fungi and Their Effect as Pretreatment on Cellulolysis. J. Biores. Technol. 116: 147-154.

Shi, W. 2010, Pretreatment and Enzymatic Hydrolysis of Peat and Pine Sawdust for Bioethanol Production. Thesis. Lakehead University. Ontario, Canada.

Singleton, V. L and Rossi, J.A.J. 1965. Colorimetry of Total Phenolic with Phosphomolybdic-phosphotungtic acid Reagent. Am. J. Enol. Viticult. : 144-158.

SNI 06-6989.11-2004. 2004. Air dan Air Limbah-Bagian 11: Cara Uji Derajat Keasaman (pH) dengan Menggunakan alat pH meter. Badan Standarisasi Nasional. 1-2.

Sun, Y., and Cheng, J. J. 2002. Hydrolysis of Lignocellulose Materials for Ethanol Production: A Review. Biores. Technol. 83: 1-11.

Surthikanthi, D., Suranto, dan Susilowati, A. 2005. Biokonversi Kompleks Lignoselulosa Eceng Gondok (Eichorrnia crassipes (Martz) Solms) Menjadi Gula Pereduksi oleh Phanerochaete chrysosporium. BioSMART 7: 17-22.

Suzuki, M. R., Hunt, C. G., Houtman, C. J., Dalebroux, Z. D and Hammel, K. E. 2006. Fungal Hydroquinones Contribute to Brown rot of Wood. Environ. Microbiol. 8: 2214 – 2223.

Varela, E. and Tien, M. 2003. Effect of pH and oxalate on hydroquinone-derived hydroxyl radical formation during brown rot wood degradation. App. Environ. Microbiol. 69: 6025-6031.

Watkinson, S.C and D.C. Eastwood. 2012. Serpula lacrymans, Wood and Building. Adv. App. Microbiol. 78: 121-149.

Wit, D. M., Junginger, M., and Faaij., A. 2013. Learning in Dedicated Wood Production System: Past and Implication for Bioenergy. Renew. Sustain. En. Rev. 19: 417-423.

Xu, G. and Goodell, B. 2001. Mechanisms of wood degradation by brown-rot fungi: chelator-mediated cellulose degradation and binding of iron by cellulose. J. Biotech. 87:43-57.

Yelle, D. J., J. Raplh, F. Lu, and K.E. Hammel. 2008. Evidence of Cleavage Lignin by a Brown-rot Basidiomycete. Environ. Microbiol. 10:1844-1849.




DOI: http://dx.doi.org/10.21776/ub.jeest.2017.004.02.7

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.