STABILITY ANALYSIS FOR THE HIV/AIDS EPIDEMIC MODEL WITH INFLUENCE OF THE AGE GROUP AND POPULATION DENSITY
Abstract
The issue of HIV/AIDS is a serious public health problem. AIDS patients are generally dominated by a age group of adolescent and a productive age. The general pattern of the spread of infection occur through sexual contact (sexually transmitted diseases = STD). The threat of of HIV/AIDS epidemics were seen through the data of cases of HIV/AIDS continues to rise.
This paper examines and implementation a deterministic mathematical model of a simple SI (susceptible-infected) model to analyze the stability of the HIV/AIDS by age group and population density. The population is divided into two subpopulations, namely subpopulation of juvenile and adults. Subpopulation of adults who are sexually active is assumed produce both susceptible newborns and infected newborns. The local and global stability for the equilibrium point of the model were analyzed using a combination of analysis of eigenvalues of Jacobian matrix and the Lyapunov-LaSalle’s invariant principle or using a threshold values of the susceptible reproduced ratio (), the infected reproduced ratio (), and the infection contact rate ( ) .
For the case of data of HIV/AIDS in Indonesia with initial population of 2009, the threshold values of the susceptible reproduction ratio, the infected reproduction ratio, and the infection contact rate, The model of the HIV/AIDS has a unique disease-free equilibrium point, The disease-free equilibrium point is globally asymptotically stable, namely if parameter values not change then there no infected individual and subpopulation of juvenile and adults susceptible tend to constant positive value.
Key words: HIV/AIDS model, SI model, the reproduction ratio, the equilibrium point,
Global stabilityFull Text:
PDFReferences
Anderson, R.M., (2001) The Role of Mathematical Models in The Study of HIV Transmission and The Epidemiology of AIDS, J. AIDS 1;214-256.
Anonim (2007). Profil Kesehatan Indonesia, Departemen Kesehatan RI. http:/www.depkes.go.id/ Tanggal Akses 12 Agustus 2011.
Anonim, (2010a) Profil Kesehatan Indonesia. Depkes RI. http:/www.depkes.go.id/ Tanggal Akses 12 Agustus 2011.
Anonim, (2010b) Republic of Indonesia Country Report of the Follow up to The Declaration of Commitment on HIV/AIDS: Reporting Period 2008-2009, National AIDS Commision Republic of Indonesia. Anonim, (2010c) United Nations General Assembly Special Sesion (UNGASS) Country Report. Depkes RI.
Brauer, F. and Castillo-Chavez, C. (2001) Mathematical Models in Population Biology and Epidemiology, Text in Applied Mathematics Vol. 40, Springer Verlag.
Kermack, W.O san McKendrick, A.G. (1927) A Contribution to the Mathematical of Epidemics, Proceedings of the Royal Society of London 1997; 115;700-721.
Lopez, R., Kuang, Y. dan Tridane, A. (2007).
A Simple SI with Two age groups and Its Application to US HIV epidemics: To Treat or Not to Treat, Journal of Biological Systems 2007; 15; 169-184.
Marsudi dan Trisilowati (2004) Model Penyebaran Epidemik dan Penyebaran Spatial (Geografi) Epidemik Demam Berdarah, Jurnal Ilmu-Ilmu Hayati (Live Science), Vol. 16 Nomor 1, Lemlit Unibraw Malang.
Marsudi dan Kwardiniya (2011) Analisis Kestabilan Model HIV/AIDS dengan Pengaruh Kelompok Umur dan Kepadatan Penduduk, Laporan Hasil Penelitian Fundamental DP2M Dikti, Universitas Brawijaya.
Murray, J. D. ( 1993) Mathematical Biology, Springer-Verlag Berlin Heidelberg, NewYork.
Rao, A.S.R.S.. (1993) Mathematical modeling of AIDS Epidemic in India, Current Science, Vol. 84 No. 9.
DOI: http://dx.doi.org/10.21776/ub.jeest.2014.001.02.2
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution 4.0 International License.