OIL SPILL TRAJECTORY SIMULATION AND ENVIRONMENTAL SENSITIVITY INDEX MAPPING : A CASE STUDY OF TANJUNG PRIOK, JAKARTA
Abstract
Potential oil spills can be sourced from ship collisions, offshore oil drilling leaks, or refueling activities between ships. Tanjung Priok Port, Jakarta as the busiest port in Indonesia has the possibility of an oil spill disaster. Fuel oil could pollute the environment both in coastal and marine areas. As an anticipatory step, it is necessary to carry out an oil spill modeling simulation for contingency planning. Oil spill modeling was carried out using GNOME software using wind and ocean currents data as universal movers that move oil in the waters. The scenario used in this study is a spill occurred in March, the spill occurred during refueling between ships as much as 1500 barrels. The simulation results show that dominant oil spreads to the east and northeast and can reach sensitive areas in less than 4 days. Environmental sensitivity index mapping is carried out in areas that are predicted to be affected by an oil spill using ESI guidance from IPIECA. ESI map shows that the research area can be categorized into 5 categories from less sensitive (1B) to very sensitive (10A). Sensitive area is an intertidal area which is a habitat for mangroves and aquaculture.
Keywords
Full Text:
PDFReferences
ASTUTI, A. D., & TITAH, H. S. (2021). Studi Fitoremediasi Polutan Minyak Bumi di Wilayah Pesisir Tercemar Menggunakan Tumbuhan Mangrove (Studi Kasus: Tumpahan Minyak Mentah Sumur YYA-1 Pesisir Karawang Jawa Barat). Jurnal Teknik ITS. 9(2), 111-116.
BASSEY, B. O., AJARE, T. O., OZURUMBA, D. C., & BARONI, A. S. (2017). Oil Spill Trajectory And Fate Forecasting, Response And Cleanup Options For A Coastal Environment: A Green Field Model Offshore Indonesia. International Oil Spill Conference Proceedings, 2017(1), 2017084. https://doi.org/10.7901/2169-3358-2017.1.000084
BEEGLE-KRAUSE, J. (2001). General NOAA oil modeling environment (GNOME): a new spill trajectory model. International Oil Spill Conference, 2001(2), 865–871.
BEJARANO, A. C., & MICHEL, J. (2016). Oil spills and their impacts on sand beach invertebrate communities: A literature review. Environmental Pollution, 218, 709–722.
BRAMANTYA, L. P. Y., Rifaldi, M., & Oktavian, R. (2018). Sintesis dan Karakterisasi Silika Aerogel Hidrofobik dan Oliofilik Dari Pasir Laut Sebagai Absorben Tumpahan Minyak. Jurnal Teknik Kimia dan Lingkungan. 2(2), 49-54.
CHASSIGNET, E. P., HURLBURT, H. E., SMEDSTAD, O. M., HALLIWELL, G. R., HOGAN, P. J., WALLCRAFT, A. J., BARAILLE, R., & BLECK, R. (2007). The HYCOM (hybrid coordinate ocean model) data assimilative system. Journal of Marine Systems, 65(1–4), 60–83.
DUKE, N. C. (2016). Oil spill impacts on mangroves: recommendations for operational planning and action based on a global review. Marine Pollution Bulletin, 109(2), 700–715.
EKE, C. D., & ANIFOWOSE, B. (2017). Oil Spill Trajectory Simulation for the Clair Oilfield, Faroe Shetland Channel, United Kingdom Continental Shelf. SPE Health, Safety, Security, Environment, & Social Responsibility Conference - North America. https://doi.org/10.2118/184437-MS
ERDIAN, O., SATRIADI, A., & ATMODJO, W. (2017). Studi Sebaran Jenis Sedimen Dasar di Perairan Pantai Marina Ancol Jakarta. Journal of Oceanography. 6(1), 203-212.
FUAD, M. A. Z., SARTIMBUL, A., IRANAWATI, F., SAMBAH, A. B., YONA, D., HARLYAN, L. I., HIDAYATI, N., RAHMAN, M. A., & SARI, S. H. J. (2019). Metode Penelitian Kelautan dan Perikanan: Prinsip Dasar Penelitian, Pengambilan Sampel, Analisis, dan Interpretasi Data. Universitas Brawijaya Press.
GAUTAMA, B. G., LONGÉPÉ, N., FABLET, R., & MERCIER, G. (2016). Assimilative 2-D Lagrangian Transport Model for the Estimation of Oil Leakage Parameters From SAR Images: Application to the Montara Oil Spill. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(11), 4962–4969. https://doi.org/10.1109/JSTARS.2016.2606110
HJERMANN, D. Ø., MELSOM, A., DINGSØR, G. E., DURANT, J. M., EIKESET, A. M., RØED, L. P., OTTERSEN, G., STORVIK, G., & STENSETH, N. C. (2007). Fish and oil in the Lofoten–Barents Sea system: synoptic review of the effect of oil spills on fish populations. Marine Ecology Progress Series, 339, 283–299.
IPIECA/IMO/IOGP. (2012). Sensitivity mapping for oil spill response. IPIECA-IOGP Good Practice Guide Series, Oil Spill Response Joint Industry Project (OSR-JIP). https://www.ipieca.org/resources/good-practice/sensitivity-mapping-for-oil-spill-response/
LANGANGEN, Ø., OLSEN, E., STIGE, L. C., OHLBERGER, J., YARAGINA, N. A., VIKEBØ, F. B., BOGSTAD, B., STENSETH, N. C., & HJERMANN, D. Ø. (2017). The effects of oil spills on marine fish: Implications of spatial variation in natural mortality. Marine Pollution Bulletin, 119(1), 102–109.
LEVIN, K. A. (2006). Study design III: Cross-sectional studies. Evidence-based dentistry, 7(1), 24-25.
MARDIASTUTI, A., MULYANI, Y. A., SUSANTI, N. K. Y., IVONNIE, R. N., & OKTAVIA, A. C. (2020). Oil spill in Pulau Rambut and its possible long-term impact on mangrove as waterbirds habitat. IOP Conference Series: Earth and Environmental Science, 528(1), 12015.
NUGRAHA, W. A., BUDIARTO, U., & AMIRUDDIN, W. (2015). Analisa Waktu Bongkar Muat Kapal Peti Kemas Pada Terminal III Pelabuhan Tanjung Priok Jakarta. Jurnal Teknik Perkapalan. 3(4), 524-535.
NELSON, J. R., & GRUBESIC, T. H. (2018). Oil spill modeling: Risk, spatial vulnerability, and impact assessment. Progress in Physical Geography, 42(1), 112–127. https://doi.org/10.1177/0309133317744737
NUGROHO, D., PRANOWO, W. S., GUSMAWATI, N. F., NAZAL, Z. B., ROZALI, R. H. B., & FUAD, M. A. Z. (2021). The application of coupled 3d hydrodynamic and oil transport model to oil spill incident in karawang offshore, indonesia. IOP Conference Series: Earth and Environmental Science, 925(1), 12048.
PRASETYO, A., SANTOSO, N., & PRASETYO, L. B. (2017). Kepekaan Lingkungan Ekosistem Mangrove Terhadap Tumpahan Minyak di Kecamatan Ujung Pangkah, Gresik. Jurnal Penelitian Hutan Dan Konservasi Alam, 14(2), 91–98.
PUSPITASARI, T. A., FUAD, M. A. Z., & PARWATI, E. (2020). Prediksi Pola Persebaran Tumpahan Minyak Menggunakan Data Citra Satelit Sentinel-1 Di Perairan Bintan, Kepulauan Riau. Jurnal Penginderaan Jauh dan Pengolahan Data Citra Digital. 17(2).
SAMUELS, W. B., AMSTUTZ, D. E., BAHADUR, R., & ZIEMNIAK, C. (2013). Development of a global oil spill modeling system. Earth Science Research, 2(2), 52.https://doi.org/10.5539/esr.v2n2p52.
SEKARAN, U., & BOUGIE, R. (2016). Research methods for business: A skill building approach. John Wiley & Sons.
SIAGIAN, Y. S., RIFAI, A., & ISMANTO, A. (2016). Pemodelan Sebaran Tumpahan Minyak di Perairan Teluk Balikpapan, Kalimantan Timur. Journal of Oceanography, 5(2), 270–276.
SUHERY, N., DAMAR, A., & EFFENDI, H. (2017). Indeks Kerentanan Ekosistem Terumbu Karang Terhadap Tumpahan Minyak: Kasus Pulau Pramuka dan Pulau Belanda di Kepulauan. Jurnal Ilmu dan Teknologi Kelautan Tropis. 9(1), 67-90.
WANG, P., & ROBERTS, T. M. (2013). Distribution of surficial and buried oil contaminants across sandy beaches along NW Florida and Alabama coasts following the Deepwater Horizon oil spill in 2010. Journal of Coastal Research, 29(6a), 144–155.
YONA, D., SARTIMBUL, A., SAMBAH, A. B., HIDAYATI, N., HARLYAN, L. I., SARI, S. H. J., FUAD, M. A. Z., RAHMAN, M. A., & IRANAWATI, F. (2017). Fundamental Oseanografi. Universitas Brawijaya Press.
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution 4.0 International License.