IDENTIFICATION OF PATCHOULI LEAVES QUALITY USING SELF ORGANIZING MAPS (SOM) ARTIFICIAL NEURAL NETWORK

Kartika Purwandari, Candra Dewi, Imam Cholissodin

Abstract


One of the essential oil export commodities from Indonesia is patchouli oil. However, the price of patchouli todays is unstable caused by the low quality of the oils, which has high levels of acid and lower alcohol content. One part of patchouli that is widely used to obtain essential oils is the leaf. The better quality of leaves will produce oil with grade quality. The quality of the leaves can be identified by its physical characteristics. Leaves that have a good quality are small leaves, thick and slightly yellowish red color. This identification process can be done visually, but, it will be easier if it can be done automatically using computer applications. Therefore, this paper performs automatic identification of leaves utilizing image of patchouli leaves and artificial neural network algorithm Self Organizing Maps (SOM). Identification was done to distinguish the leaves with good quality and poor. From the test results using the initial learning rate 0.1, 0.3 deduction learning rate, the minimum rate learning 0.0001, 40 training data and testing the data 60 obtained an average accuracy of 82.82%.

Full Text:

PDF

References


Andrew, Alasdair. 2004. An Introduction to Digital Image Processing with Matlab. Victoria University of Technology: School of Computer Science and Mathematics.

Asanurjaya, Bangun. 2012. Identifikasi Tanaman Jati Menggunakan Probabilistic Neural Network Dengan Ekstraksi Fitur Ciri Morfologi Daun. Skripsi. Bogor: Institut Pertanian Bogor.

Budhi, G.S., Liliana, Harryanto, S., 2008. Cluster Analysis untuk Memprediksi Talenta Pemain Basket Menggunakan Jaringan Saraf Tiruan Self Organizing Maps (SOM). Research. Surabaya: Universitas Kristen Petra.

Business News. 2012. Selama Semester I Tahun 2012 Harga Minyak Nilam Melemah. Jakarta.

Frianto, Herri Trisna, Rivai, Muhammad. 2008. Implementasi Jaringan Syaraf Tiruan Backpropragation dan Self Organizing Map Menggunakan Sensor Gas Semikonduktor Sebagai Identifikasi Jenis Gas. Seminar Nasional Informatika. Yogyakarta: UPN.

Halimah, Diana P.P. 2010. Minyak Atsiri dari Tanaman Nilam (Pogostemon cablin Benth.) Melalui Metode Fermentasi dan Hidrodistilasi Serta Uji Bioaktivitasnya. Prosiding. Surabaya: Institut Teknologi Sepuluh Nopember.

Kardinan, Agus. 2005. Tanaman Penghasil Minyak Atsiri Komoditas Wangi Penuh Potensi. PT Agromedia Pustaka, Tangerang.

Mangun, H.M.S. 2006. Nilam. Penebar Swadaya, Jakarta.

Munawaroh, Siti. 2010. Pengolah Citra Digital untuk Identifikasi Uang Kertas. Jurnal Teknologi Informasi DINAMIK Volume XV, No.1.

Pratiwi, Dian. 2012. The Use of Self Organizing Map Method and Feature Selection in Image Database Classification Image. Research. Jakarta: Universitas Trisakti.

Rukamana, H. Rahmat. 2003. Nilam, Prospek Agribisnis dan Teknik Budi Daya. Kanisius, Yogyakarta.

Wahyuminianto, Arga., Purnama, K. E., Christyowidiasmoro. 2011. Identifikasi Tumbuhan Berdasarkan Minutiae Tulang Daun Menggunakan SOM Kohonen. Skripsi. Surabaya: Institut Teknologi Sepuluh Nopember.

Wahyuningrum, R.T., Rosyid, B., Permana, K. E., 2012. Pengenalan Pola Senyum Menggunakan Self Organizing Maps (SOM) Berbasis Ekstraksi Fitur Two Dimensional Principal Componen Analysis (2DPCA). Seminar Nasional Aplikasi Teknologi Informasi (SNATI).




DOI: http://dx.doi.org/10.21776/ub.jeest.2016.003.01.6

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.