AUTOMATIC CLUSTERING AND OPTIMIZED FUZZY LOGICAL RELATIONSHIPS FOR MINIMUM LIVING NEEDS FORECASTING
Abstract
Keywords: minimum living needs, automatic clustering, particle swarm optimization, fuzzy logical relationships
Full Text:
PDFReferences
ANGGODO, YP & MAHMUDY, WF 2016, 'Peramalan Butuhan Hidup Minimum Menggunakan Automatic Clustering dan Fuzzy Logical Relationship ', Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 3, no. 2, pp. 94-102.
ASKARI, S., MONTAZERIN, N. & ZARANDI, M. H. F. 2015. A clustering based forecasting algorithm for multivariable fuzzy time series using linear combinations of indepent variables. Applied Soft Computing, 35, 151-160.
CHEN, S. M. & CHEN, C. D. 2011. Handling forecasting problems based on high-order fuzzy logical relationships. Expert Systems with Applications, 38, 3856-3864.
CHEN, S. M. & CHEN, S. W. 2015. Fuzzy forecasting based on two-factors second-order fuzzy-trend logical relationship group and the probabilites of tren of fuzzy logical relatonships. IEEE Transactions on Cybernetics, Vol 45, No. 3.
CHEN, S. M. & KAO, P. Y. 2013. TAIEX forecasting based on fuzzy time series, particle swarm optimazation techniques and support vector machines. Information Sciences, 247, 62-71.
CHEN, S. M. & TUNAWIJAYA, K. 2011. Multivariate fuzzy forecasting based on fuzzy time series and automatic clustering technique. Expert System with Applications, 38, 10594-10605.
CHENG, S. H., CHEN, S. M. & JIAN, W. S. 2015. A novel fuzzy time series forecasting method based on fuzzy logical relationships and similarity measures. IEEE International Conference on Systems, Man, and Cybernetics, 978(1), 4799-8697.
CHENG S. H., CHEN, S. M. & JIAN, W. S. 2016. Fuzzy time series forecasting based on fuzzy logical relationships and similarity measures. Information Sciences, 327, 272-287.
FATYANOSA, TN & MAHMUDY, WF 2016, Implementation of Real Coded Genetic Fuzzy System for Rainfall Forecasting, International Conference on Sustainable Information Engineering and Technology (SIET), Malang, 17 October, Fakultas Ilmu Komputer, Universitas Brawijaya, pp. 24-33.
GARCIA, A. J. & FLORES, W. G. 2016. Automatic clustering using nature-inspired metaheuristics : a survey. Applied Soft Computing, 41, 192-213.
HE, H. & TAN, Y. 2012. A Two-stage genetic algorithm for automatic clustering. Neurcomputing, 81, 49-59.
MAHMUDY, WF 2014, Optimasi part type selection and machine loading problems pada FMS menggunakan metode particle swarm optimization, Konferensi Nasional Sistem Informasi (KNSI), STMIK Dipanegara, Makassar, 27 Februari - 1 Maret, pp. 1718-1723.
MARINI, F. & WALCZAK, B. 2015. Paticle swarm optimization (PSO). A tutorial. Chemometrics and Intellegent Laboratory Systems, 149, 153-165.
NOVITASARI, D, CHOLISSODIN, I & MAHMUDY, WF 2016, Hybridizing PSO With SA for Optimizing SVR Applied to Software Effort Estimation, Telkomnika (Telecommunication Computing Electronics and Control), vol. 14, no. 1, pp. 245-253.
QIU, W., ZHANG, P. & WANG, Y. 2015. Fuzzy time series forecasting model based on automatic clustering techniques and generalized fuzzy logical relationship. Hindawi Publishing Corporation Mathematical Problems in Engineering, 962597.
SAHA, S. & BANDYOPADHYAY, S. 2013. A generalized automatic clustering algorithm in a multiobjective famework. Applied Soft Computing, 13, 89-108.
WAHYUNI, I, MAHMUDY, WF & IRIANY, A 2016, Rainfall Prediction in Tengger Region Indonesia using Tsukamoto Fuzzy Inference System, International Conference on Information Technology, Information Systems and Electrical Engineering (ICITISEE), Yogyakarta, Indonesia, 23-24 August 2016, pp. 130-135.
WANG, W. DAN LIU, X., 2015. Fuzzy forecasting based on automatic clustering and axiomatic fuzzy set classification. Information Sciences, 294, 78-94.
DOI: http://dx.doi.org/10.21776/ub.jeest.2017.004.01.1
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution 4.0 International License.